

The Fermi Gamma-ray Space Telescope: Spacecraft and Instruments (mostly LAT)

Julie McEnery NASA/GSFC

What is Fermi?

Two Instruments:

Large Area Telescope (LAT)

PI: P. Michelson (Stanford University)

20 MeV - 300 GeV

>2.5 sr FoV

Gamma-Ray Burst Monitor (GBM)

PI: W. Paciesas (NASA/MSFC)

Co-PI: J. Greiner (MPE)

8 keV - 40 MeV

9 sr FoV

Launch: June 11 2008

Lifetime: 5 years (req)

10 years (goal)

Large Area Telescope (LAT)

Gamma-ray Burst Monitor (GBM)

Launch!

- Launch from Cape Canaveral Air Station 11 June 2008 at 12:05PM EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.
- Communications:
 - Science data link via
 TDRSS Ku-band, average data rate 1.2 Mbps.
 - S-band via TDRSS and ground stations

Spacecraft performance

- Pointing knowledge
 - <10 arcseconds, using 2 star trackers (a third is available as a spare)
- Absolute Timing
 - Better than 300 ns, using GPS and oscillators
- Orbit location (knowing where we are)
 - ~<10m using GPS</p>
- Observing modes
 - Survey
 - view entire sky every 2 orbits, efficient as the Earth does not enter the LAT FoV.
 - Inertially pointed
 - Scheduled planned observation at an interesting location
 - Autonomous to automatically put or keep a GRB location within the FoV of the LAT
 - Slew requirement of 75 deg in 10 mins, but can reach max slew rates of 0.3 deg/s

Spacecraft Performance

Data transmission

- Science data: Ku band downlink (TDRSS) ~10 times/day to instrument operations centers
- GBM data and high level LAT data delivered daily, and LAT science data delivered within ~12 hours (often more quickly) to Fermi Science Support Center
- Alerts (from onboard LAT or GBM detection): near real time, via TDRSS
 S-band demand access service.
 - Alert latency to GCN <15 s

Exploring the gamma-ray sky

In the detector:

- Is the event a gamma-ray or charged cosmic-ray?
- What is the energy of the event?
- Where in the sky did the event come from?
- How well can we estimate our knowledge of the above quantities?
- With a gamma-ray source:
 - Are we sure that it is a source?
 - Is there a feature or a cutoff in the energy spectrum?
 - Is it a point source or does it have a spatial extent?
 - Is it variable?
 - Does it show periodic emission?
- External information:
 - Is it associated with a known object at other wavelengths?
 - How does the gamma-ray emission compare with the lower energy emission? Temporally? Spatially?
 - How far away is it?

Gamma-ray Energy Loss Mechanisms

- For photons in matter above ~10 MeV, pair conversion is the dominant energy loss mechanism.
 - Pair conversion telescope

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

Pair Conversion Technique

Tracker: angular resolution is determined by: multiple scattering (at low energies) => thin conversion foils position resolution (at high energies) => fine pitch detectors

Conversion efficiency -> Thick conversion foils, or many foils

Calorimeter: Enough X₀ to contain shower, shower leakage correction.

Anti-coincidence detector:

Must have high efficiency for rejecting charged particles, but not veto gamma-rays

Evolution of Fermi-LAT

1. Select the Technologies

Large area SSD systems and Csl Calorimeters resulted from SSC R&D

2. Make it Modular
Incoming of the property of

Another lesson learned in the 1980's: monolithic detectors are inferior to Segmented detectors

Original GISMO 1 Event Displays from the first GLAST simulations

Delta II (launch of GP-B)

Cheap, reliable Communication satellite launch vehicle

Diameter sets transverse size Throw capacity to LEO sets depth of Calorimeter Rocket Payload Fairing Power budget of 650 W

The Fermi Large Area Telescope

Overall LAT Design:

- 4x4 array of identical towers
- 3000 kg, 650 W (allocation)
- $1.8 \text{ m} \times 1.8 \text{ m} \times 1.0 \text{ m}$

Precision Si-strip Tracker (TKR)

18 XY tracking planes. 228 μ m pitch). High efficiency.

Good position resolution (ang. resolution at high energy) $12 \times 0.03 \times X_0$ front end => reduce multiple scattering. $4 \times 0.18 \times X_0$ back-end => increase sensitivity >1GeV

Csl Calorimeter(CAL)

Array of 1536 CsI(TI) crystals in 8 layers. Hodoscopic => Cosmic ray rejection, shower leakage correction.

 $8.5 X_0 => Shower max contained <100 GeV$

Anticoincidence Detector (ACD)

Segmented (89 plastic scintillator tiles) => minimize self veto

Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

LAT Tracker - details

Tracker Production Overview

LAT Calorimeter

Team effort involving physicists and engineers from the United States (NRL), France (IN2P3 & CEA), and Sweden

Crossed Hodoscope Log design (first proposed by Per Carlson, 1989)

Gives 3D image of energy deposition 8 Layers deep (1.08 rad. len./layer) 12 "Logs" per Layer

Each Log (or Xtal Element) is readout from both ends by 2 Photodiodes 1 - large area, 1 small area

Location of Energy Depositions
2 coordinates by log location
3rd coordinate by end-to-end
light asymmetry

Energy Determination

Issues: Low Energies - Energy loss in Tracker is critical High Energies - Leakage compensation is critical Compensation for the numerous gaps

Background Rejection

First: Low Earth Orbit Particle Flux Environment

South Atlantic Anomaly (Hot Spot)

Instrument Triggering and Onboard Data Flow

Hardware Trigger

On-board Processing

Hardware trigger based on special signals from each tower; initiates readout

Function: • "did anything happen?"

keep as simple as possible

Combinations of trigger primitives:

- TKR 3 x•y pair layers in a row workhorse γ trigger
- CAL:
 - LO independent check, energy info. HI – indicates high
 - HI indicates high energy event:

Upon a trigger, all subsystems are read out in ~27μs

Instrument Total Rate: <3 kHz>*

*using ACD veto in hardware trigger

Onboard filters: reduce data to fit within downlink, provide samples for systematic studies.

- flexible, loose cuts
- The FSW filter code is wrapped and embedded in the full detector simulation
- leak a fraction of otherwiserejected events to the ground for diagnostics, along with events ID for calibration

signal/background can be tuned

γ rate: a few Hz

Total Downlink Rate: <~400 Hz>

On-board science analysis: transient detection (bursts)

Event Reconstruction

Event Classification and Background Rej

- Several Classification trees:
 - Energy resolution
 - Choose between 3 energy recon methods
 - Calculate probability that energy is well measured (use this as an analysis knob to tune final energy resolution performance)
 - PSF analysis

Divide events into thick and thin (depending on the thickness of the radiator where they converted)

Evaluate vertex and single track solutions separately

Divide events into energy bins (characteristics change dramatically)

- Decide whether or not to use vertex solution
- Calculate probability that track was well measured (use to tune final angular resolution performance)
- Background rejection

Divide events into vertex/single track and several energy bins

• Each path has a set of hard cuts followed by a classification tree that yields a probability that the event was a gamma-ray (use this to tune final background rejection).

Event Selections

- We have optimized cuts on the CT probability variables for different analysis to provide predefined event selections.
 - Transient class: Relatively loose cuts on background rejection and angular resolution, suitable for short duration (<200 s) analysis (3-5 hz event rate)
 - Diffuse class: Tighter cuts, suitable for analysis of point and extended sources, and analysis of galactic diffuse emission.
 - Ultradiffuse: Currently under validation, very tight cuts to produce clean gamma-ray sample suitable for studies of the extragalactic diffuse emission.
- Montecarlo data is used to parameterise the instrument response for each of these event selections. These parameterizations are known as Instrument Response Function (IRFs)
 - Current IRFs are P6_V3_DIFFUSE and P6_V3_TRANSIENT

Jargon: PSF, Effective Area

Point-Spread-Function

2D Point Source Image at 275 MeV

PSF Characterized by 68% & 95% Containment

Effective Area- Aeff

Not all entering γs pair-convert

$$\begin{split} P_{conv}(x) &= 1 - exp(-\frac{7}{9} \frac{x}{\div_{Mat}}) \\ A_{eff} &\cong A_{Geom} \cdot P_{conv}(depth) \cdot Eff_{Analysis} \\ \text{Typically Aeff} &\leq \frac{1}{2} A_{Geom} \end{split}$$

LAT Performance Aeff

c.f. EGRET

- Effective area rises rapidly up to 1 GeV.
- Useful data collected out to 65-70 deg from the LAT boresight.

Effective area

- Large effective area means that more gamma-rays are detected by LAT for a given source brightness.
- Improves sensitivity; observations of rapid variability/transients (typical minimum integration for bright sources is 1 day, but can go smaller for brightest sources)

LAT Performance: Angular Resolution

- Angular resolution rapidly improves with increasing energy.
- Improved sensitivity (less background); greatly improved source locations, reduced source confusion - particularly for hard spectrum sources.
- Source localizations 5-10's arcmin typically can follow up with MW observations.
 - Everything is better when we know where to look!

New Pulsar in CTA 1

Science Express October 16 Abdo et al., 2008, Science

LAT 95% error radius = 0.038 deg EGRET 95% error radius = 0.24 deg

 $P \sim 316 \text{ ms}$ $Pdot \sim 3.6 \times 10^{-13}$ $Flux (>100MeV) = 3.8 \pm 0.2 \times 10^{-7} \text{ ph cm-2}$ s-1

Pulse undetected in radio/X-ray

Unidentified EGRET sources - many are pulsars!

Extended Sources

 LAT is resolving the MeV-GeV gamma-ray emission from extended sources.

LAT Energy Reach

PKS 2155-304

High energy Crab Nebula Spectrum

- Finally closed the unexplored energy range between 10 and 100 GeV
- Joint fits between LAT (MeV-GeV) and IACTs (GeV-TeV)
- Peak sensitivity at a few GeV for typical spectra

Spectral fits

 LAT sensitivity and wide bandpass allows the measurement of many non power-law spectra

3C454.3: Broken power-law

Phase averaged Vela Pulsar spectrum (power-law with exponential cutoff)

Survey mode

- Rock north for one orbit and south for the next
- Cover entire sky and always keep LAT FoV away from the Earth limb

All Sky Sensitivity on Different timescales

LAT sensitivity on 4 different timescales: 100 s, 1 orbit (96 mins), 1 day and 1 year

- In survey mode, the LAT observes the entire sky every two orbits (~3 hours), each point on the sky receives ~30 mins exposure during this time.
- Multiwavelength observations in coordination with the LAT will be limited only by the ability to coordinate to other observations in other wavebands.
- Can also perform pointed observations of particularly interesting regions of the sky.

All Sky Sensitivity

